Lecture 32

NC and AC: Subclasses of P/poly

Depth of a Circuit

Depth of a Circuit

Definition: The depth of a circuit is the length of the longest directed path from an input node

Depth of a Circuit

Definition: The depth of a circuit is the length of the longest directed path from an input node
to the output node.

Depth of a Circuit

Definition: The depth of a circuit is the length of the longest directed path from an input node
to the output node.

Example: Depth of PALIN's circuit was

Depth of a Circuit

Definition: The depth of a circuit is the length of the longest directed path from an input node
to the output node.

Xn/2+1

| cawn be replaced bg a

cireuit of 5 vertices.

can be replaced bg a

T clrewit of O(n) vertices.

Example: Depth of PALIN's circuit was

Depth of a Circuit

Definition: The depth of a circuit is the length of the longest directed path from an input node
to the output node.

Xn/2+1

| cawn be replaced bg a

cireuit of 5 vertices.

can be replaced bg a

T clrewit of O(n) vertices.

Example: Depth of PALIN's circuit was O(log n).

NC and AC

Definition: For every d > 0, a language L is in NC“

NC and AC

Definition: For every d > 0, a language L is in NC? if L can be decided by a family of circuits

NC and AC

Definition: For every d > 0, a language L is in NC? if L can be decided by a family of circuits
1C,. }.eni Where C, has poly(n)-size ana O(log? n) depth.

NC and AC

Definition: For every d > 0, a language L is in NC? if L can be decided by a family of circuits

1C,. }.eni Where C, has poly(n)-size ana O(log? n) depth.

Definition: NC = U, NC' (NC stands for Nick’s Class)

NC and AC

Definition: For every d > 0, a language L is in NC? if L can be decided by a family of circuits

1C,. }.eni Where C, has poly(n)-size ana O(log? n) depth.
Definition: NC = U, NC' (NC stands for Nick’s Class)

Definition: For every d > 0, a language L is in ACY

NC and AC

Definition: For every d > 0, a language L is in NC? if L can be decided by a family of circuits

1C,. }.eni Where C, has poly(n)-size ana O(log? n) depth.
Definition: NC = U, NC' (NC stands for Nick’s Class)

Definition: For every d > 0, a language L is in AC? if L can be decided by a family of circuits

NC and AC

Definition: For every d > 0, a language L is in NC? if L can be decided by a family of circuits
1C,. }.eni Where C, has poly(n)-size ana O(log? n) depth.

Definition: NC = U, NC' (NC stands for Nick’s Class)

Definition: For every d > 0, a language L is in AC? if L can be decided by a family of circuits
1C,. }.en: Where C, has unbounded fan-in, poly(n)-size ana O(log? n) depth.

NC and AC

Definition: For every d > 0, a language L is in NC? if L can be decided by a family of circuits
1C,. }.eni Where C, has poly(n)-size ana O(log? n) depth.

Definition: NC = U, NC' (NC stands for Nick’s Class)

Definition: For every d > 0, a language L is in AC? if L can be decided by a family of circuits
1C,. }.en: Where C, has unbounded fan-in, poly(n)-size ana O(log? n) depth.

Definition: AC = U,,, AC' (AC stands for Alternating’s Class)

NC and AC

Definition: For every d > 0, a language L is in NC? if L can be decided by a family of circuits
1C,. }.eni Where C, has poly(n)-size ana O(log? n) depth.

Definition: NC = U, NC' (NC stands for Nick’s Class)

Definition: For every d > 0, a language L is in AC? if L can be decided by a family of circuits
1C,. }.en: Where C, has unbounded fan-in, poly(n)-size ana O(log? n) depth.

Definition: AC = U,,, AC' (AC stands for Alternating’s Class)

Definition: uniform-NC and uniform-AC require circuits to be logspace unitorm.

Motivation for NC and AC

Motivation for NC and AC

Why should we study NC and AC:

Motivation for NC and AC

Why should we study NC and AC:

e Showing NP € NC might be easier than NP & P/poly and may give insight to prove NP ¢ P/poly

Motivation for NC and AC

Why should we study NC and AC:

e Showing NP € NC might be easier than NP & P/poly and may give insight to prove NP ¢ P/poly

® NC and AC correspond to efticient parallel computation.

Observation on NC and AC

Observation on NC and AC

e Output of an NC? circuit depends on the constant number of input bits.

Observation on NC and AC

e Output of an NC? circuit depends on the constant number of input bits.

Example: L = {1" | n > 1} is notin NC'.

Observation on NC and AC

e Output of an NC? circuit depends on the constant number of input bits.

Example: L = {1" | n > 1} is notin NC'.

e NC' C AC' C NCH!.

Observation on NC and AC

e Output of an NC? circuit depends on the constant number of input bits.

Example: L = {1" | n > 1} is notin NC'.

e NC' C AC' C NCH!.

7

trivial

Observation on NC and AC

e Output of an NC? circuit depends on the constant number of input bits.

Example: L = {1" | n > 1} is notin NC'.

e NC' C AC' C NCH!.

/‘

a vertex with unbounded fan-in can be
trivial replaced by an O(log n) depth cireuit.

Observation on NC and AC

e Output of an NC? circuit depends on the constant number of input bits.

Example: L = {1" | n > 1} is notin NC'.

e NC' C AC' C NC'*!. Thus, NC = AC.

/‘

a vertex with unbounded fan-in can be
trivial replaced by an O(log n) depth cireuit.

Observation on NC and AC

e Output of an NC? circuit depends on the constant number of input bits.

Example: L = {1" | n > 1} is notin NC'.

e NC' C AC' C NC'*!. Thus, NC = AC.

/‘

a vertex with unbounded fan-in can be
trivial replaced by an O(log n) depth cireuit.

o NC c ACY c Nc!.

Observation on NC and AC

e Output of an NC? circuit depends on the constant number of input bits.

Example: L = {1" | n > 1} is notin NC'.

e NC' C AC' C NC'*!. Thus, NC = AC.

/‘

a vertex with unbounded fan-in can be
trivial replaced by an O(log n) depth cireuit.

o NC c ACY c Nc!.

L of above exa mple

Observation on NC and AC

e Output of an NC? circuit depends on the constant number of input bits.

Example: L = {1" | n > 1} is notin NC'.

e NC' C AC' C NC'*!. Thus, NC = AC.

/‘

_ @ Vertex with unbounded fan-itn can be
trivial replaced by an O(log n) depth cireuit.

o NC c ACY c Nc!.

7

L of above exa mple

™~ PARITY is in NC! but not in AC.

uniform-NC! vs L

uniform-NC! vs L

Theorem: uniform-NC! C L.

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof:

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof: Let L be in uniform-NC!.

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof: Let L be in uniform-NC!.

We will construct a logspace algorithm A for L.

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof: Let L be in uniform-NC!.

We will construct a logspace algorithm A for L.

A(x):

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof: Let L be in uniform-NC!.

We will construct a logspace algorithm A for L.

A(x):
let C = circuit for | x| length input.

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof: Let L be in uniform-NC!.

We will construct a logspace algorithm A for L.

A(x):
let C = circuit for | x| length input.
V = output vertex of C

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof: Let L be in uniform-NC!.

We will construct a logspace algorithm A for L.

A(x):
let C = circuit for | x| length input.
V = output vertex of C
output B(V, x)

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof: Let L be in uniform-NC!.

We will construct a logspace algorithm A for L.
B(V, x):

A(x):
let C = circuit for | x| length input.
V = output vertex of C
output B(V, x)

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof: | et . be in uniform-NC!.
We will construct a logspace algorithm A for L.
B(V, x):
A(x) if Vis an input vertex

let C = circuit for | x| length input.
V = output vertex of C
output B(V, x)

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof: Let L be in uniform-NC!.

We will construct a logspace algorithm A for L.

BV, x):
A(x): if Vis an input vertex

let C = circuit for |x| length input. return appropriate x;

V = output vertex of C
output B(V, x)

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof: Let L be in uniform-NC!.

We will construct a logspace algorithm A for L.

BV, x):
A(x): if Vis an input vertex

let C = circuit for |x| length input. return appropriate x;

V = output vertex of C let V|, V, = vertices with an edge to V

output B(V, x)

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof: Let L be in uniform-NC!.

We will construct a logspace algorithm A for L.

BV, x):
A(x): if Vis an input vertex

let C = circuit for |x| length input. return appropriate x;

V = output vertex of C let V|, V, = vertices with an edge to V
output B(V, x) op = boolean operator of V

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof: Let L be in uniform-NC!.

We will construct a logspace algorithm A for L.

B(V,x):
A(x): if Vis an input vertex
let C = circuit for | x| length input. return appropriate x;
V = output vertex of C let V|, V, = vertices with an edge to V
output B(V, x) op = boolean operator of V

return B(V,,x) op B(V,, x)

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof: Let L be in uniform-NC!.

We will construct a logspace algorithm A for L.

B(V,x):
A(x): if Vis an input vertex
let C = circuit for | x| length input. return appropriate x;
V = output vertex of C let V,, V, = vertices with an edge to V
output B(V, x) op = boolean operator of V

return B(V,,x) op B(V,, x)

Space Complexity of B:

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof: Let L be in uniform-NC!.

We will construct a logspace algorithm A for L.

B(V,x):
A(x): if Vis an input vertex
let C = circuit for | x| length input. return appropriate x;
V = output vertex of C let V,, V, = vertices with an edge to V
output B(V, x) op = boolean operator of V

return B(V,,x) op B(V,, x)

Space Complexity of B: Total O(log n) recursion levels and at every level it is storing

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof: Let L be in uniform-NC!.

We will construct a logspace algorithm A for L.

B(V,x):
A(x): if Vis an input vertex
let C = circuit for | x| length input. return appropriate x;
V = output vertex of C let V,, V, = vertices with an edge to V
output B(V, x) op = boolean operator of V

return B(V,,x) op B(V,, x)

Space Complexity of B: Total O(log n) recursion levels and at every level it is storing

constant information.

uniform-NC! vs L

Theorem: uniform-NC! C L.

Proof: Let L be in uniform-NC!.

We will construct a logspace algorithm A for L.

B(V,x):
A(x): if Vis an input vertex
let C = circuit for | x| length input. return appropriate x;
V = output vertex of C let V,, V, = vertices with an edge to V
output B(V, x) op = boolean operator of V

return B(V,,x) op B(V,, x)

Space Complexity of B: Total O(log n) recursion levels and at every level it is storing

constant information.

uniform-AC! vs NL

uniform-AC! vs NL

Theorem: NL C uniform-AC!.

uniform-AC! vs NL

Theorem: NL C uniform-AC!.

Proof:

uniform-AC! vs NL

Theorem: NL C uniform-AC!.

Proof: Let L be in NL and M be a logspace NTM that decides it.

uniform-AC! vs NL

Theorem: NL C uniform-AC!.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Let A, denote the NV X N matrix, where N = # of configurations of M on an input x, s.t.

uniform-AC! vs NL

Theorem: NL C uniform-AC!.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Let A, denote the NV X N matrix, where N = # of configurations of M on an input x, s.t.

Alli,j] = 1 ift 3 a path of length at most 2! from i to j in Gy«

uniform-AC! vs NL

Theorem: NL C uniform-AC!.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Let A, denote the NV X N matrix, where N = # of configurations of M on an input x, s.t.

Alli,j] = 1 ift 3 a path of length at most 2! from i to j in Gy«

How can we compute A, | from A;?

uniform-AC! vs NL

Theorem: NL C uniform-AC!.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Let A, denote the NV X N matrix, where N = # of configurations of M on an input x, s.t.

Alli,j] = 1 ift 3 a path of length at most 2! from i to j in Gy«

How can we compute A, | from A;?

Al+1[i9j] —

uniform-AC! vs NL

Theorem: NL C uniform-AC!.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Let A, denote the NV X N matrix, where N = # of configurations of M on an input x, s.t.

Alli,j] = 1 ift 3 a path of length at most 2! from i to j in Gy«

How can we compute A, | from A;?

Al+1[iaj] = V1<k<N (Al[ia k] A Az[k,j])

uniform-AC! vs NL

Theorem: NL C uniform-AC!.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Let A, denote the NV X N matrix, where N = # of configurations of M on an input x, s.t.

Alli,j] = 1 ift 3 a path of length at most 2! from i to j in Gy«
How can we compute A, | from A;?

Al+1[iaj] = V1<k<N (Al[ia k] A Az[k,j])

Building the circuit for L:

uniform-AC! vs NL

Theorem: NL C uniform-AC!.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Let A, denote the NV X N matrix, where N = # of configurations of M on an input x, s.t.

Alli,j] = 1 ift 3 a path of length at most 2! from i to j in Gy«
How can we compute A, | from A;?

Al+1[iaj] = V1<k<N (Al[ia k] A Az[k,j])

Building the circuit for L:
® Have one layer for every [€ [0, log V].

uniform-AC! vs NL

Theorem: NL C uniform-AC!.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Let A, denote the NV X N matrix, where N = # of configurations of M on an input x, s.t.

Alli,j] = 1 ift 3 a path of length at most 2! from i to j in Gy«

How can we compute A, | from A;?

Al+1[iaj] = V1<k<N (Al[ia k] A Az[k,j])

Building the circuit for L:
® Have one layer for every [€ [0, log V].
® |n the /th layer, keep one vertex for every (i, j)th entry of A,.

uniform-AC! vs NL

Theorem: NL C uniform-AC!.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Let A, denote the NV X N matrix, where N = # of configurations of M on an input x, s.t.

Alli,j] = 1 ift 3 a path of length at most 2! from i to j in Gy«

How can we compute A, | from A;?

Al+1[iaj] = V1<k<N (Al[ia k] A Az[k,j])

Building the circuit for L:
® Have one layer for every [€ [0, log V].
® |n the /th layer, keep one vertex for every (i, j)th entry of A,.

® Arrange wires/edges from [th layer to (I + 1)th layer according to this formula.

uniform-AC! vs NL

Theorem: NL C uniform-AC!.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Let A, denote the NV X N matrix, where N = # of configurations of M on an input x, s.t.

Alli,j] = 1 ift 3 a path of length at most 2! from i to j in Gy«

How can we compute A, | from A;?

Al+1[iaj] = V1<k<N (Al[ia k] A Az[k,j])

Building the circuit for L:

® Have one layer for every [€ [0, log V].
® |n the /th layer, keep one vertex for every (i, j)th entry of A,.

® Arrange wires/edges from [th layer to (I + 1)th layer according to this formula.

uniform-AC! vs NL

Theorem: NL C uniform-AC!.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Let A, denote the NV X N matrix, where N = # of configurations of M on an input x, s.t.

Alli,j] = 1 ift 3 a path of length at most 2! from i to j in Gy«

How can we compute A, | from A;?

Al+1[iaj] = V1<k<N (Al[ia k] A Al[kaj])
edges for Oth layer

Building the circuit for L:

require some Work

® Have one layer for every [€ [0, log V].

® |n the /th layer, keep one vertex for every (i, j)th entry of A,.

® Arrange wires/edges from [th layer to (I + 1)th layer according to this formula.

uniform-AC! vs NL

Theorem: NL C uniform-AC!.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Let A, denote the NV X N matrix, where N = # of configurations of M on an input x, s.t.

Alli,j] = 1 ift 3 a path of length at most 2! from i to j in Gy«

How can we compute A, | from A;?

Al+1[iaj] = V1<k<N (Al[ia k] A Al[kaj])
edges for Oth layer

Building the circuit for L:

require some Work

® Have one layer for every [€ [0, log V].
® |n the /th layer, keep one vertex for every (i, j)th entry of A,.

® Arrange wires/edges from [th layer to (I + 1)th layer according to this formula.

® Keep the (start config, acc. config.) vertex in the last layer as output vertex.

uniform-AC! vs NL

Theorem: NL C uniform-AC!.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Let A, denote the NV X N matrix, where N = # of configurations of M on an input x, s.t.

Alli,j] = 1 ift 3 a path of length at most 2! from i to j in Gy«

How can we compute A, | from A;?

Al+1[iaj] = V1<k<N (Al[ia k] A Al[kaj])
edges for Oth layer

Building the circuit for L:

require some Work

® Have one layer for every [€ [0, log V].
® |n the /th layer, keep one vertex for every (i, j)th entry of A,.

® Arrange wires/edges from [th layer to (I + 1)th layer according to this formula.

® Keep the (start config, acc. config.) vertex in the last layer as output vertex. -

