
Lecture 32

NC and AC: Subclasses of P/poly

Depth of a Circuit

Depth of a Circuit

Definition: The depth of a circuit is the length of the longest directed path from an input node

Depth of a Circuit

Definition: The depth of a circuit is the length of the longest directed path from an input node

to the output node.

Depth of a Circuit

Definition: The depth of a circuit is the length of the longest directed path from an input node

to the output node.

Example: Depth of PALIN’s circuit was

Depth of a Circuit

Definition: The depth of a circuit is the length of the longest directed path from an input node

to the output node.

Example: Depth of PALIN’s circuit was

x1 xn xn−1

⊕ ⊕

xn/2 xn/2+1

⊕

¬ ¬ ¬

∧

can be replaced by a

circuit of vertices.5

can be replaced by a

circuit of vertices.O(n)

x2 …

…

…

Depth of a Circuit

Definition: The depth of a circuit is the length of the longest directed path from an input node

to the output node.

Example: Depth of PALIN’s circuit was .O(log n)

x1 xn xn−1

⊕ ⊕

xn/2 xn/2+1

⊕

¬ ¬ ¬

∧

can be replaced by a

circuit of vertices.5

can be replaced by a

circuit of vertices.O(n)

x2 …

…

…

NC and AC

NC and AC

Definition: For every , a language is in NCd ≥ 0 L d

NC and AC

Definition: For every , a language is in NCd ≥ 0 L d if can be decided by a family of circuits L

NC and AC

Definition: For every , a language is in NCd ≥ 0 L d if can be decided by a family of circuits L

, where has -size and depth.{Cn}n∈ℕ Cn poly(n) O(logd n)

NC and AC

Definition: For every , a language is in NCd ≥ 0 L d if can be decided by a family of circuits L

, where has -size and depth.{Cn}n∈ℕ Cn poly(n) O(logd n)

Definition: NC NC (NC stands for Nick’s Class)= ∪i≥0
i

NC and AC

Definition: For every , a language is in NCd ≥ 0 L d if can be decided by a family of circuits L

, where has -size and depth.{Cn}n∈ℕ Cn poly(n) O(logd n)

Definition: NC NC (NC stands for Nick’s Class)= ∪i≥0
i

Definition: For every , a language is in ACd ≥ 0 L d

NC and AC

Definition: For every , a language is in NCd ≥ 0 L d if can be decided by a family of circuits L

, where has -size and depth.{Cn}n∈ℕ Cn poly(n) O(logd n)

Definition: NC NC (NC stands for Nick’s Class)= ∪i≥0
i

Definition: For every , a language is in ACd ≥ 0 L d if can be decided by a family of circuits L

NC and AC

Definition: For every , a language is in NCd ≥ 0 L d if can be decided by a family of circuits L

, where has -size and depth.{Cn}n∈ℕ Cn poly(n) O(logd n)

Definition: NC NC (NC stands for Nick’s Class)= ∪i≥0
i

Definition: For every , a language is in ACd ≥ 0 L d if can be decided by a family of circuits L

, where has unbounded fan-in, -size and depth.{Cn}n∈ℕ Cn poly(n) O(logd n)

NC and AC

Definition: For every , a language is in NCd ≥ 0 L d if can be decided by a family of circuits L

, where has -size and depth.{Cn}n∈ℕ Cn poly(n) O(logd n)

Definition: NC NC (NC stands for Nick’s Class)= ∪i≥0
i

Definition: For every , a language is in ACd ≥ 0 L d if can be decided by a family of circuits L

, where has unbounded fan-in, -size and depth.{Cn}n∈ℕ Cn poly(n) O(logd n)

Definition: AC AC (AC stands for Alternating’s Class)= ∪i≥0
i

NC and AC

Definition: For every , a language is in NCd ≥ 0 L d

Definition: uniform-NC and uniform-AC require circuits to be logspace uniform.

if can be decided by a family of circuits L

, where has -size and depth.{Cn}n∈ℕ Cn poly(n) O(logd n)

Definition: NC NC (NC stands for Nick’s Class)= ∪i≥0
i

Definition: For every , a language is in ACd ≥ 0 L d if can be decided by a family of circuits L

, where has unbounded fan-in, -size and depth.{Cn}n∈ℕ Cn poly(n) O(logd n)

Definition: AC AC (AC stands for Alternating’s Class)= ∪i≥0
i

Motivation for NC and AC

Motivation for NC and AC

Why should we study NC and AC:

Motivation for NC and AC

• Showing NP NC might be easier than NP P and may give insight to prove NP P .⊈ ⊈ /poly ⊈ /poly

Why should we study NC and AC:

Motivation for NC and AC

• Showing NP NC might be easier than NP P and may give insight to prove NP P .⊈ ⊈ /poly ⊈ /poly

• NC and AC correspond to efficient parallel computation.

Why should we study NC and AC:

Observation on NC and AC

Observation on NC and AC

• Output of an NC circuit depends on the constant number of input bits.0

Observation on NC and AC

• Output of an NC circuit depends on the constant number of input bits.0

Example: is not in NC .L = {1n ∣ n ≥ 1} 0

Observation on NC and AC

• Output of an NC circuit depends on the constant number of input bits.0

• NC AC NC .i ⊆ i ⊆ i+1

Example: is not in NC .L = {1n ∣ n ≥ 1} 0

Observation on NC and AC

• Output of an NC circuit depends on the constant number of input bits.0

• NC AC NC .i ⊆ i ⊆ i+1

Example: is not in NC .L = {1n ∣ n ≥ 1} 0

trivial

Observation on NC and AC

• Output of an NC circuit depends on the constant number of input bits.0

• NC AC NC .i ⊆ i ⊆ i+1

Example: is not in NC .L = {1n ∣ n ≥ 1} 0

a vertex with unbounded fan-in can be

replaced by an depth circuit.O(log n)trivial

Observation on NC and AC

• Output of an NC circuit depends on the constant number of input bits.0

Thus, NC AC. =• NC AC NC .i ⊆ i ⊆ i+1

Example: is not in NC .L = {1n ∣ n ≥ 1} 0

a vertex with unbounded fan-in can be

replaced by an depth circuit.O(log n)trivial

Observation on NC and AC

• Output of an NC circuit depends on the constant number of input bits.0

Thus, NC AC. =• NC AC NC .i ⊆ i ⊆ i+1

• NC AC NC .0 ⊂ 0 ⊂ 1

Example: is not in NC .L = {1n ∣ n ≥ 1} 0

a vertex with unbounded fan-in can be

replaced by an depth circuit.O(log n)trivial

Observation on NC and AC

• Output of an NC circuit depends on the constant number of input bits.0

Thus, NC AC. =• NC AC NC .i ⊆ i ⊆ i+1

• NC AC NC .0 ⊂ 0 ⊂ 1

Example: is not in NC .L = {1n ∣ n ≥ 1} 0

a vertex with unbounded fan-in can be

replaced by an depth circuit.O(log n)trivial

 of above exampleL

Observation on NC and AC

• Output of an NC circuit depends on the constant number of input bits.0

Thus, NC AC. =• NC AC NC .i ⊆ i ⊆ i+1

• NC AC NC .0 ⊂ 0 ⊂ 1

Example: is not in NC .L = {1n ∣ n ≥ 1} 0

a vertex with unbounded fan-in can be

replaced by an depth circuit.O(log n)trivial

PARITY is in NC but not in AC .1 0
 of above exampleL

uniform-NC vs L1

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof:

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof: Let be in uniform-NC .L 1

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof: Let be in uniform-NC .L 1

We will construct a logspace algorithm for .A L

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof: Let be in uniform-NC .L 1

:A(x)

We will construct a logspace algorithm for .A L

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof: Let be in uniform-NC .L 1

:A(x)
 let circuit for length input.C = |x |

We will construct a logspace algorithm for .A L

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof: Let be in uniform-NC .L 1

:A(x)
 let circuit for length input.C = |x |

 output vertex of V = C

We will construct a logspace algorithm for .A L

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof: Let be in uniform-NC .L 1

:A(x)
 let circuit for length input.C = |x |

 output vertex of V = C
 output B(V, x)

We will construct a logspace algorithm for .A L

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof: Let be in uniform-NC .L 1

:A(x)
 let circuit for length input.C = |x |

 output vertex of V = C
 output B(V, x)

We will construct a logspace algorithm for .A L

:B(V, x)

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof: Let be in uniform-NC .L 1

:A(x)
 let circuit for length input.C = |x |

 output vertex of V = C
 output B(V, x)

We will construct a logspace algorithm for .A L

:B(V, x)
 if is an input vertexV

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof: Let be in uniform-NC .L 1

:A(x)
 let circuit for length input.C = |x |

 output vertex of V = C
 output B(V, x)

We will construct a logspace algorithm for .A L

:B(V, x)
 if is an input vertexV
 return appropriate xi

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof: Let be in uniform-NC .L 1

:A(x)
 let circuit for length input.C = |x |

 output vertex of V = C
 output B(V, x)

We will construct a logspace algorithm for .A L

:B(V, x)
 if is an input vertexV
 return appropriate xi

 let , vertices with an edge to V1 V2 = V

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof: Let be in uniform-NC .L 1

:A(x)
 let circuit for length input.C = |x |

 output vertex of V = C
 output B(V, x)

We will construct a logspace algorithm for .A L

:B(V, x)
 if is an input vertexV
 return appropriate xi

 let , vertices with an edge to V1 V2 = V
 boolean operator of op = V

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof: Let be in uniform-NC .L 1

:A(x)
 let circuit for length input.C = |x |

 output vertex of V = C
 output B(V, x)

We will construct a logspace algorithm for .A L

:B(V, x)
 if is an input vertexV
 return appropriate xi

 let , vertices with an edge to V1 V2 = V
 boolean operator of op = V

 return B(V1, x) op B(V2, x)

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof: Let be in uniform-NC .L 1

:A(x)
 let circuit for length input.C = |x |

 output vertex of V = C
 output B(V, x)

We will construct a logspace algorithm for .A L

:B(V, x)
 if is an input vertexV
 return appropriate xi

 let , vertices with an edge to V1 V2 = V
 boolean operator of op = V

 return B(V1, x) op B(V2, x)

Space Complexity of :B

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof: Let be in uniform-NC .L 1

:A(x)
 let circuit for length input.C = |x |

 output vertex of V = C
 output B(V, x)

We will construct a logspace algorithm for .A L

:B(V, x)
 if is an input vertexV
 return appropriate xi

 let , vertices with an edge to V1 V2 = V
 boolean operator of op = V

 return B(V1, x) op B(V2, x)

Space Complexity of :B Total recursion levels and at every level it is storing O(log n)

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof: Let be in uniform-NC .L 1

:A(x)
 let circuit for length input.C = |x |

 output vertex of V = C
 output B(V, x)

We will construct a logspace algorithm for .A L

:B(V, x)
 if is an input vertexV
 return appropriate xi

 let , vertices with an edge to V1 V2 = V
 boolean operator of op = V

 return B(V1, x) op B(V2, x)

Space Complexity of :B Total recursion levels and at every level it is storing O(log n)
constant information.

uniform-NC vs L1

Theorem: uniform-NC L.1 ⊆
Proof: Let be in uniform-NC .L 1

:A(x)
 let circuit for length input.C = |x |

 output vertex of V = C
 output B(V, x)

We will construct a logspace algorithm for .A L

:B(V, x)
 if is an input vertexV
 return appropriate xi

 let , vertices with an edge to V1 V2 = V
 boolean operator of op = V

 return B(V1, x) op B(V2, x)

Space Complexity of :B Total recursion levels and at every level it is storing O(log n)
constant information.

uniform-AC vs NL1

Theorem: NL uniform-AC .⊆ 1

uniform-AC vs NL1

Proof:

Theorem: NL uniform-AC .⊆ 1

uniform-AC vs NL1

Proof: Let be in NL and be a logspace NTM that decides it.L M

Theorem: NL uniform-AC .⊆ 1

uniform-AC vs NL1

Proof: Let be in NL and be a logspace NTM that decides it.L M

Let denote the matrix, where # of configurations of on an input , s.t.Al N × N N = M x

Theorem: NL uniform-AC .⊆ 1

uniform-AC vs NL1

Proof: Let be in NL and be a logspace NTM that decides it.L M

Let denote the matrix, where # of configurations of on an input , s.t.Al N × N N = M x

Theorem: NL uniform-AC .⊆ 1

uniform-AC vs NL1

 iff a path of length at most from to in .Al[i, j] = 1 ∃ 2l i j GM,x

Proof: Let be in NL and be a logspace NTM that decides it.L M

Let denote the matrix, where # of configurations of on an input , s.t.Al N × N N = M x

How can we compute from ?Al+1 Al

Theorem: NL uniform-AC .⊆ 1

uniform-AC vs NL1

 iff a path of length at most from to in .Al[i, j] = 1 ∃ 2l i j GM,x

Proof: Let be in NL and be a logspace NTM that decides it.L M

Let denote the matrix, where # of configurations of on an input , s.t.Al N × N N = M x

How can we compute from ?Al+1 Al

 Al+1[i, j] =

Theorem: NL uniform-AC .⊆ 1

uniform-AC vs NL1

 iff a path of length at most from to in .Al[i, j] = 1 ∃ 2l i j GM,x

Proof: Let be in NL and be a logspace NTM that decides it.L M

Let denote the matrix, where # of configurations of on an input , s.t.Al N × N N = M x

How can we compute from ?Al+1 Al

 Al+1[i, j] = ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL uniform-AC .⊆ 1

uniform-AC vs NL1

 iff a path of length at most from to in .Al[i, j] = 1 ∃ 2l i j GM,x

Proof: Let be in NL and be a logspace NTM that decides it.L M

Let denote the matrix, where # of configurations of on an input , s.t.Al N × N N = M x

How can we compute from ?Al+1 Al

 Al+1[i, j] = ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL uniform-AC .⊆ 1

uniform-AC vs NL1

 iff a path of length at most from to in .Al[i, j] = 1 ∃ 2l i j GM,x

Building the circuit for :L

Proof: Let be in NL and be a logspace NTM that decides it.L M

Let denote the matrix, where # of configurations of on an input , s.t.Al N × N N = M x

How can we compute from ?Al+1 Al

 Al+1[i, j] = ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL uniform-AC .⊆ 1

uniform-AC vs NL1

 iff a path of length at most from to in .Al[i, j] = 1 ∃ 2l i j GM,x

Building the circuit for :L

• Have one layer for every .l ∈ [0, log N]

Proof: Let be in NL and be a logspace NTM that decides it.L M

Let denote the matrix, where # of configurations of on an input , s.t.Al N × N N = M x

How can we compute from ?Al+1 Al

 Al+1[i, j] = ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL uniform-AC .⊆ 1

uniform-AC vs NL1

 iff a path of length at most from to in .Al[i, j] = 1 ∃ 2l i j GM,x

Building the circuit for :L

• Have one layer for every .l ∈ [0, log N]

• In the th layer, keep one vertex for every th entry of . l (i, j) Al

Proof: Let be in NL and be a logspace NTM that decides it.L M

Let denote the matrix, where # of configurations of on an input , s.t.Al N × N N = M x

How can we compute from ?Al+1 Al

 Al+1[i, j] = ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL uniform-AC .⊆ 1

uniform-AC vs NL1

 iff a path of length at most from to in .Al[i, j] = 1 ∃ 2l i j GM,x

Building the circuit for :L

• Have one layer for every .l ∈ [0, log N]

• In the th layer, keep one vertex for every th entry of . l (i, j) Al

• Arrange wires/edges from th layer to th layer according to this formula. l (l + 1)

Proof: Let be in NL and be a logspace NTM that decides it.L M

Let denote the matrix, where # of configurations of on an input , s.t.Al N × N N = M x

How can we compute from ?Al+1 Al

 Al+1[i, j] = ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL uniform-AC .⊆ 1

uniform-AC vs NL1

 iff a path of length at most from to in .Al[i, j] = 1 ∃ 2l i j GM,x

Building the circuit for :L

• Have one layer for every .l ∈ [0, log N]

• In the th layer, keep one vertex for every th entry of . l (i, j) Al

• Arrange wires/edges from th layer to th layer according to this formula. l (l + 1)

Proof: Let be in NL and be a logspace NTM that decides it.L M

Let denote the matrix, where # of configurations of on an input , s.t.Al N × N N = M x

How can we compute from ?Al+1 Al

 Al+1[i, j] = ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL uniform-AC .⊆ 1

uniform-AC vs NL1

 iff a path of length at most from to in .Al[i, j] = 1 ∃ 2l i j GM,x

Building the circuit for :L

• Have one layer for every .l ∈ [0, log N]

• In the th layer, keep one vertex for every th entry of . l (i, j) Al

• Arrange wires/edges from th layer to th layer according to this formula. l (l + 1)

edges for th layer

require some work

0

Proof: Let be in NL and be a logspace NTM that decides it.L M

Let denote the matrix, where # of configurations of on an input , s.t.Al N × N N = M x

How can we compute from ?Al+1 Al

 Al+1[i, j] = ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL uniform-AC .⊆ 1

uniform-AC vs NL1

 iff a path of length at most from to in .Al[i, j] = 1 ∃ 2l i j GM,x

Building the circuit for :L

• Have one layer for every .l ∈ [0, log N]

• In the th layer, keep one vertex for every th entry of . l (i, j) Al

• Arrange wires/edges from th layer to th layer according to this formula. l (l + 1)
• Keep the (start config, acc. config.) vertex in the last layer as output vertex.

edges for th layer

require some work

0

Proof: Let be in NL and be a logspace NTM that decides it.L M

Let denote the matrix, where # of configurations of on an input , s.t.Al N × N N = M x

How can we compute from ?Al+1 Al

 Al+1[i, j] = ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL uniform-AC .⊆ 1

uniform-AC vs NL1

 iff a path of length at most from to in .Al[i, j] = 1 ∃ 2l i j GM,x

Building the circuit for :L

• Have one layer for every .l ∈ [0, log N]

• In the th layer, keep one vertex for every th entry of . l (i, j) Al

• Arrange wires/edges from th layer to th layer according to this formula. l (l + 1)
• Keep the (start config, acc. config.) vertex in the last layer as output vertex.

edges for th layer

require some work

0

