
Lecture 32

NC and AC: Subclasses of P/poly
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Motivation for NC and AC

• Showing NP  NC might be easier than NP  P  and may give insight to prove NP  P .⊈ ⊈ /poly ⊈ /poly

• NC and AC correspond to efficient parallel computation.

Why should we study NC and AC:
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Observation on NC and AC

• Output of an NC  circuit depends on the constant number of input bits.0

Thus, NC  AC. =• NC   AC   NC .i ⊆ i ⊆ i+1

• NC   AC   NC .0 ⊂ 0 ⊂ 1

Example:  is not in NC .L = {1n ∣ n ≥ 1} 0

a vertex with unbounded fan-in can be  

replaced by an  depth circuit.O(log n)trivial

PARITY is in NC  but not in AC .1 0
 of above exampleL



uniform-NC  vs L1



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: 



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: Let  be in uniform-NC .L 1



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: Let  be in uniform-NC .L 1

We will construct a logspace algorithm  for .A L



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: Let  be in uniform-NC .L 1

:A(x)

We will construct a logspace algorithm  for .A L



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: Let  be in uniform-NC .L 1

:A(x)
   let   circuit for  length input.C = |x |

We will construct a logspace algorithm  for .A L



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: Let  be in uniform-NC .L 1

:A(x)
   let   circuit for  length input.C = |x |

     output vertex of V = C

We will construct a logspace algorithm  for .A L



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: Let  be in uniform-NC .L 1

:A(x)
   let   circuit for  length input.C = |x |

     output vertex of V = C
   output B(V, x)

We will construct a logspace algorithm  for .A L



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: Let  be in uniform-NC .L 1

:A(x)
   let   circuit for  length input.C = |x |

     output vertex of V = C
   output B(V, x)

We will construct a logspace algorithm  for .A L

:B(V, x)



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: Let  be in uniform-NC .L 1

:A(x)
   let   circuit for  length input.C = |x |

     output vertex of V = C
   output B(V, x)

We will construct a logspace algorithm  for .A L

:B(V, x)
   if  is an input vertexV



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: Let  be in uniform-NC .L 1

:A(x)
   let   circuit for  length input.C = |x |

     output vertex of V = C
   output B(V, x)

We will construct a logspace algorithm  for .A L

:B(V, x)
   if  is an input vertexV
      return appropriate xi



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: Let  be in uniform-NC .L 1

:A(x)
   let   circuit for  length input.C = |x |

     output vertex of V = C
   output B(V, x)

We will construct a logspace algorithm  for .A L

:B(V, x)
   if  is an input vertexV
      return appropriate xi

   let ,   vertices with an edge to V1 V2 = V



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: Let  be in uniform-NC .L 1

:A(x)
   let   circuit for  length input.C = |x |

     output vertex of V = C
   output B(V, x)

We will construct a logspace algorithm  for .A L

:B(V, x)
   if  is an input vertexV
      return appropriate xi

   let ,   vertices with an edge to V1 V2 = V
     boolean operator of op = V



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: Let  be in uniform-NC .L 1

:A(x)
   let   circuit for  length input.C = |x |

     output vertex of V = C
   output B(V, x)

We will construct a logspace algorithm  for .A L

:B(V, x)
   if  is an input vertexV
      return appropriate xi

   let ,   vertices with an edge to V1 V2 = V
     boolean operator of op = V

   return   B(V1, x) op B(V2, x)



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: Let  be in uniform-NC .L 1

:A(x)
   let   circuit for  length input.C = |x |

     output vertex of V = C
   output B(V, x)

We will construct a logspace algorithm  for .A L

:B(V, x)
   if  is an input vertexV
      return appropriate xi

   let ,   vertices with an edge to V1 V2 = V
     boolean operator of op = V

   return   B(V1, x) op B(V2, x)

Space Complexity of :B



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: Let  be in uniform-NC .L 1

:A(x)
   let   circuit for  length input.C = |x |

     output vertex of V = C
   output B(V, x)

We will construct a logspace algorithm  for .A L

:B(V, x)
   if  is an input vertexV
      return appropriate xi

   let ,   vertices with an edge to V1 V2 = V
     boolean operator of op = V

   return   B(V1, x) op B(V2, x)

Space Complexity of :B Total  recursion levels and at every level it is storing O(log n)



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: Let  be in uniform-NC .L 1

:A(x)
   let   circuit for  length input.C = |x |

     output vertex of V = C
   output B(V, x)

We will construct a logspace algorithm  for .A L

:B(V, x)
   if  is an input vertexV
      return appropriate xi

   let ,   vertices with an edge to V1 V2 = V
     boolean operator of op = V

   return   B(V1, x) op B(V2, x)

Space Complexity of :B Total  recursion levels and at every level it is storing O(log n)
constant information.



uniform-NC  vs L1

Theorem: uniform-NC   L.1 ⊆
Proof: Let  be in uniform-NC .L 1

:A(x)
   let   circuit for  length input.C = |x |

     output vertex of V = C
   output B(V, x)

We will construct a logspace algorithm  for .A L

:B(V, x)
   if  is an input vertexV
      return appropriate xi

   let ,   vertices with an edge to V1 V2 = V
     boolean operator of op = V

   return   B(V1, x) op B(V2, x)

Space Complexity of :B Total  recursion levels and at every level it is storing O(log n)
constant information.



uniform-AC  vs NL1



Theorem: NL  uniform-AC .⊆ 1

uniform-AC  vs NL1



Proof:

Theorem: NL  uniform-AC .⊆ 1

uniform-AC  vs NL1



Proof: Let  be in NL and  be a logspace NTM that decides it.L M

Theorem: NL  uniform-AC .⊆ 1

uniform-AC  vs NL1



Proof: Let  be in NL and  be a logspace NTM that decides it.L M

Let  denote the  matrix, where    # of configurations of  on an input , s.t.Al N × N N = M x

Theorem: NL  uniform-AC .⊆ 1

uniform-AC  vs NL1



Proof: Let  be in NL and  be a logspace NTM that decides it.L M

Let  denote the  matrix, where    # of configurations of  on an input , s.t.Al N × N N = M x

Theorem: NL  uniform-AC .⊆ 1

uniform-AC  vs NL1

 iff  a path of length at most  from  to  in .Al[i, j] = 1 ∃ 2l i j GM,x



Proof: Let  be in NL and  be a logspace NTM that decides it.L M

Let  denote the  matrix, where    # of configurations of  on an input , s.t.Al N × N N = M x

How can we compute  from ?Al+1 Al

Theorem: NL  uniform-AC .⊆ 1

uniform-AC  vs NL1

 iff  a path of length at most  from  to  in .Al[i, j] = 1 ∃ 2l i j GM,x



Proof: Let  be in NL and  be a logspace NTM that decides it.L M

Let  denote the  matrix, where    # of configurations of  on an input , s.t.Al N × N N = M x

How can we compute  from ?Al+1 Al

  Al+1[i, j] =

Theorem: NL  uniform-AC .⊆ 1

uniform-AC  vs NL1

 iff  a path of length at most  from  to  in .Al[i, j] = 1 ∃ 2l i j GM,x



Proof: Let  be in NL and  be a logspace NTM that decides it.L M

Let  denote the  matrix, where    # of configurations of  on an input , s.t.Al N × N N = M x

How can we compute  from ?Al+1 Al

  Al+1[i, j] =  ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL  uniform-AC .⊆ 1

uniform-AC  vs NL1

 iff  a path of length at most  from  to  in .Al[i, j] = 1 ∃ 2l i j GM,x



Proof: Let  be in NL and  be a logspace NTM that decides it.L M

Let  denote the  matrix, where    # of configurations of  on an input , s.t.Al N × N N = M x

How can we compute  from ?Al+1 Al

  Al+1[i, j] =  ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL  uniform-AC .⊆ 1

uniform-AC  vs NL1

 iff  a path of length at most  from  to  in .Al[i, j] = 1 ∃ 2l i j GM,x

Building the circuit for :L



Proof: Let  be in NL and  be a logspace NTM that decides it.L M

Let  denote the  matrix, where    # of configurations of  on an input , s.t.Al N × N N = M x

How can we compute  from ?Al+1 Al

  Al+1[i, j] =  ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL  uniform-AC .⊆ 1

uniform-AC  vs NL1

 iff  a path of length at most  from  to  in .Al[i, j] = 1 ∃ 2l i j GM,x

Building the circuit for :L

• Have one layer for every .l ∈ [0, log N]



Proof: Let  be in NL and  be a logspace NTM that decides it.L M

Let  denote the  matrix, where    # of configurations of  on an input , s.t.Al N × N N = M x

How can we compute  from ?Al+1 Al

  Al+1[i, j] =  ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL  uniform-AC .⊆ 1

uniform-AC  vs NL1

 iff  a path of length at most  from  to  in .Al[i, j] = 1 ∃ 2l i j GM,x

Building the circuit for :L

• Have one layer for every .l ∈ [0, log N]

• In the th layer, keep one vertex for every th entry of . l (i, j) Al



Proof: Let  be in NL and  be a logspace NTM that decides it.L M

Let  denote the  matrix, where    # of configurations of  on an input , s.t.Al N × N N = M x

How can we compute  from ?Al+1 Al

  Al+1[i, j] =  ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL  uniform-AC .⊆ 1

uniform-AC  vs NL1

 iff  a path of length at most  from  to  in .Al[i, j] = 1 ∃ 2l i j GM,x

Building the circuit for :L

• Have one layer for every .l ∈ [0, log N]

• In the th layer, keep one vertex for every th entry of . l (i, j) Al

• Arrange wires/edges from th layer to th layer according to this formula. l (l + 1)



Proof: Let  be in NL and  be a logspace NTM that decides it.L M

Let  denote the  matrix, where    # of configurations of  on an input , s.t.Al N × N N = M x

How can we compute  from ?Al+1 Al

  Al+1[i, j] =  ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL  uniform-AC .⊆ 1

uniform-AC  vs NL1

 iff  a path of length at most  from  to  in .Al[i, j] = 1 ∃ 2l i j GM,x

Building the circuit for :L

• Have one layer for every .l ∈ [0, log N]

• In the th layer, keep one vertex for every th entry of . l (i, j) Al

• Arrange wires/edges from th layer to th layer according to this formula. l (l + 1)



Proof: Let  be in NL and  be a logspace NTM that decides it.L M

Let  denote the  matrix, where    # of configurations of  on an input , s.t.Al N × N N = M x

How can we compute  from ?Al+1 Al

  Al+1[i, j] =  ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL  uniform-AC .⊆ 1

uniform-AC  vs NL1

 iff  a path of length at most  from  to  in .Al[i, j] = 1 ∃ 2l i j GM,x

Building the circuit for :L

• Have one layer for every .l ∈ [0, log N]

• In the th layer, keep one vertex for every th entry of . l (i, j) Al

• Arrange wires/edges from th layer to th layer according to this formula. l (l + 1)

edges for th layer  

require some work

0



Proof: Let  be in NL and  be a logspace NTM that decides it.L M

Let  denote the  matrix, where    # of configurations of  on an input , s.t.Al N × N N = M x

How can we compute  from ?Al+1 Al

  Al+1[i, j] =  ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL  uniform-AC .⊆ 1

uniform-AC  vs NL1

 iff  a path of length at most  from  to  in .Al[i, j] = 1 ∃ 2l i j GM,x

Building the circuit for :L

• Have one layer for every .l ∈ [0, log N]

• In the th layer, keep one vertex for every th entry of . l (i, j) Al

• Arrange wires/edges from th layer to th layer according to this formula. l (l + 1)
• Keep the (start config, acc. config.) vertex in the last layer as output vertex.

edges for th layer  

require some work

0



Proof: Let  be in NL and  be a logspace NTM that decides it.L M

Let  denote the  matrix, where    # of configurations of  on an input , s.t.Al N × N N = M x

How can we compute  from ?Al+1 Al

  Al+1[i, j] =  ∨1≤k≤N (Al[i, k] ∧ Al[k, j])

Theorem: NL  uniform-AC .⊆ 1

uniform-AC  vs NL1

 iff  a path of length at most  from  to  in .Al[i, j] = 1 ∃ 2l i j GM,x

Building the circuit for :L

• Have one layer for every .l ∈ [0, log N]

• In the th layer, keep one vertex for every th entry of . l (i, j) Al

• Arrange wires/edges from th layer to th layer according to this formula. l (l + 1)
• Keep the (start config, acc. config.) vertex in the last layer as output vertex.

edges for th layer  

require some work

0


