Lecture 32

NC and AC: Subclasses of P/poly
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Definition: The depth of a circuit is the length of the longest directed path from an input node
to the output node.

Xn/2+1

| cawn be replaced bg a

cireuit of 5 vertices.

can be replaced bg a

T clrewit of O(n) vertices.

Example: Depth of PALIN's circuit was O(log n).
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Definition: For every d > 0, a language L is in NC? if L can be decided by a family of circuits
1C,. }.eni Where C, has poly(n)-size ana O(log? n) depth.

Definition: NC = U, NC' (NC stands for Nick’s Class)

Definition: For every d > 0, a language L is in AC? if L can be decided by a family of circuits
1C,. }.en: Where C, has unbounded fan-in, poly(n)-size ana O(log? n) depth.

Definition: AC = U,,, AC' (AC stands for Alternating’s Class)

Definition: uniform-NC and uniform-AC require circuits to be logspace unitorm.
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Motivation for NC and AC

Why should we study NC and AC:

e Showing NP € NC might be easier than NP & P/poly and may give insight to prove NP ¢ P/poly

® NC and AC correspond to efticient parallel computation.
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Observation on NC and AC

e Output of an NC? circuit depends on the constant number of input bits.

Example: L = {1" | n > 1} is notin NC'.

e NC' C AC' C NC'*!. Thus, NC = AC.

/‘

\_ @ Vertex with unbounded fan-itn can be
trivial replaced by an O(log n) depth cireuit.

o NC c ACY c Nc!.

7

L of above exa mple

™~ PARITY is in NC! but not in AC.
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