Lecture 32

NC and AC: Subclasses of P_{/poly}

Definition: The depth of a circuit is the length of the longest directed path from an input node

Definition: The depth of a circuit is the length of the longest directed path from an input node to the output node.

Definition: The depth of a circuit is the length of the longest directed path from an input node to the output node.

Example: Depth of *PALIN*'s circuit was

to the output node.

Example: Depth of *PALIN*'s circuit was

Definition: The depth of a circuit is the length of the longest directed path from an input node

to the output node.

Example: Depth of *PALIN*'s circuit was $O(\log n)$.

Definition: The depth of a circuit is the length of the longest directed path from an input node

Definition: For every $d \ge 0$, a language L is in NC^d

Definition: For every $d \ge 0$, a language L is in NC^d if L can be decided by a family of circuits

Definition: For every $d \ge 0$, a language L is in NC^d if L can be decided by a family of circuits $\{C_n\}_{n\in\mathbb{N}}$, where C_n has poly(n)-size and $O(\log^d n)$ depth.

 $\{C_n\}_{n\in\mathbb{N}}$, where C_n has poly(n)-size and $O(\log^d n)$ depth.

Definition: $NC = \bigcup_{i \ge 0} NC^i$ (NC stands for Nick's Class)

- **Definition:** For every $d \ge 0$, a language L is in NC^d if L can be decided by a family of circuits

 $\{C_n\}_{n \in \mathbb{N}}$, where C_n has poly(n)-size and $O(\log^d n)$ depth. **Definition:** $NC = \bigcup_{i>0} NC^i$ (NC stands for Nick's Class) **Definition:** For every $d \ge 0$, a language L is in AC^d

- **Definition:** For every $d \ge 0$, a language L is in NC^d if L can be decided by a family of circuits

 $\{C_n\}_{n \in \mathbb{N}}$, where C_n has poly(n)-size and $O(\log^d n)$ depth. **Definition:** $NC = \bigcup_{i>0} NC^i$ (NC stands for Nick's Class)

- **Definition:** For every $d \ge 0$, a language L is in NC^d if L can be decided by a family of circuits

Definition: For every $d \ge 0$, a language L is in AC^d if L can be decided by a family of circuits

 $\{C_n\}_{n \in \mathbb{N}}$, where C_n has poly(n)-size and $O(\log^d n)$ depth. **Definition:** $NC = \bigcup_{i>0} NC^i$ (NC stands for Nick's Class) $\{C_n\}_{n\in\mathbb{N}}$, where C_n has unbounded fan-in, poly(n)-size and $O(\log^d n)$ depth.

- **Definition:** For every $d \ge 0$, a language L is in NC^d if L can be decided by a family of circuits
- **Definition:** For every $d \ge 0$, a language L is in AC^d if L can be decided by a family of circuits

 $\{C_n\}_{n \in \mathbb{N}}$, where C_n has poly(n)-size and $O(\log^d n)$ depth. **Definition:** $NC = \bigcup_{i>0} NC^i$ (NC stands for Nick's Class) $\{C_n\}_{n\in\mathbb{N}}$, where C_n has unbounded fan-in, poly(n)-size and $O(\log^d n)$ depth.

Definition: $AC = \bigcup_{i>0} AC^i$ (AC stands for Alternating's Class)

- **Definition:** For every $d \ge 0$, a language L is in NC^d if L can be decided by a family of circuits
- **Definition:** For every $d \ge 0$, a language L is in AC^d if L can be decided by a family of circuits

- **Definition:** For every $d \ge 0$, a language L is in NC^d if L can be decided by a family of circuits $\{C_n\}_{n \in \mathbb{N}}$, where C_n has poly(n)-size and $O(\log^d n)$ depth. **Definition:** $NC = \bigcup_{i>0} NC^i$ (NC stands for Nick's Class) **Definition:** For every $d \ge 0$, a language L is in AC^d if L can be decided by a family of circuits $\{C_n\}_{n\in\mathbb{N}}$, where C_n has unbounded fan-in, poly(n)-size and $O(\log^d n)$ depth. **Definition:** $AC = \bigcup_{i>0} AC^i$ (AC stands for Alternating's Class)
- **Definition:** uniform-NC and uniform-AC require circuits to be logspace uniform.

Why should we study **NC** and **AC**:

Why should we study **NC** and **AC**:

• Showing NP \nsubseteq NC might be easier than NP \nsubseteq P_{/poly} and may give insight to prove NP \nsubseteq P_{/poly}.

Why should we study **NC** and **AC**:

- NC and AC correspond to efficient parallel computation.

• Showing NP \nsubseteq NC might be easier than NP \nsubseteq P_{/poly} and may give insight to prove NP \nsubseteq P_{/poly}.

• Output of an NC^0 circuit depends on the constant number of input bits.

• Output of an NC^0 circuit depends on the constant number of input bits.

Example: $L = \{1^n \mid n \ge 1\}$ is not in NC⁰.

• Output of an NC^0 circuit depends on the constant number of input bits.

Example: $L = \{1^n \mid n \ge 1\}$ is not in **NC**⁰.

• $NC^i \subseteq AC^i \subseteq NC^{i+1}$.

• Output of an NC^0 circuit depends on the constant number of input bits.

Example: $L = \{1^n \mid n \ge 1\}$ is not in **NC**⁰.

• $NC^i \subseteq AC^i \subseteq NC^{i+1}$. trivial

• Output of an **NC**⁰ circuit depends on the constant number of input bits.

Example: $L = \{1^n \mid n \ge 1\}$ is not in NC⁰.

• Output of an **NC**⁰ circuit depends on the constant number of input bits.

Example: $L = \{1^n \mid n \ge 1\}$ is not in NC⁰.

• $NC^i \subseteq AC^i \subseteq NC^{i+1}$. Thus, NC = AC. i a vertex with unbounded fan-in can be vial replaced by an $O(\log n)$ depth circuit. trivial

• Output of an **NC**⁰ circuit depends on the constant number of input bits.

Example: $L = \{1^n \mid n \ge 1\}$ is not in NC⁰.

- $NC^i \subseteq AC^i \subseteq NC^{i+1}$. Thus, NC = AC. i a vertex with unbounded fan-in can be replaced by an $O(\log n)$ depth circuit. trivial
- $NC^0 \subset AC^0 \subset NC^1$.

• Output of an **NC**⁰ circuit depends on the constant number of input bits.

Example: $L = \{1^n \mid n \ge 1\}$ is not in NC⁰.

• $NC^i \subseteq AC^i \subseteq NC^{i+1}$. Thus, NC = AC. i a vertex with unbounded fan-in can be vial replaced by an $O(\log n)$ depth circuit. trivial

•
$$NC^0 \subset AC^0 \subset NC^1$$
.
L of above example

• Output of an NC^0 circuit depends on the constant number of input bits.

Example: $L = \{1^n \mid n \ge 1\}$ is not in NC⁰.

• $NC^i \subseteq AC^i \subseteq NC^{i+1}$. Thus, NC = AC. n a vertex with unbounded fan-in can be vial replaced by an $O(\log n)$ depth circuit.

trivial

• $NC^0 \subset AC^0 \subset NC^1$. \sim PARITY is in NC¹ but not in AC⁰. L of above example

Theorem: uniform-NC¹ \subseteq L.

Theorem: uniform-NC¹ \subseteq L.

Proof:

Theorem: uniform-NC¹ \subseteq L.

Proof: Let *L* be in **uniform-NC**¹.

Theorem: uniform-NC¹ \subseteq L.

Proof: Let *L* be in **uniform-NC**¹.

We will construct a logspace algorithm A for L.

Theorem: uniform-NC¹ \subseteq L.

Proof: Let *L* be in **uniform-NC**¹.

We will construct a logspace algorithm A for L.

A(x):

Theorem: uniform-NC¹ \subseteq L.

Proof: Let *L* be in **uniform-NC**¹.

We will construct a logspace algorithm A for L.

A(x): let C = circuit for |x| length input.

Theorem: uniform-NC¹ \subseteq L.

Proof: Let *L* be in **uniform-NC**¹.

We will construct a logspace algorithm A for L.

A(x): let C = circuit for |x| length input.V = output vertex of C

Theorem: uniform-NC¹ \subseteq L.

Proof: Let *L* be in **uniform-NC**¹.

We will construct a logspace algorithm A for L.

A(x):

let C = circuit for |x| length input. V = output vertex of C**output** B(V, x)

Theorem: uniform-NC¹ \subseteq L.

Proof: Let *L* be in **uniform-NC**¹.

We will construct a logspace algorithm A for L.

A(x):

let C = circuit for |x| length input. V = output vertex of C**output** B(V, x)

B(V, x):

Theorem: uniform-NC¹ \subseteq L.

Proof: Let *L* be in **uniform-NC**¹.

We will construct a logspace algorithm A for L.

A(x):

let C = circuit for |x| length input. V = output vertex of C**output** B(V, x) B(V, x): if V is an input vertex

Theorem: uniform-NC¹ \subseteq L.

Proof: Let *L* be in **uniform-NC**¹.

We will construct a logspace algorithm A for L.

A(x):

let C = circuit for |x| length input. V = output vertex of C**output** B(V, x) B(V, x): **if** V is an input vertex **return** appropriate x_i

Theorem: uniform-NC¹ \subseteq L.

Proof: Let *L* be in **uniform-NC**¹.

We will construct a logspace algorithm A for L.

A(x):

let C = circuit for |x| length input. V = output vertex of C**output** B(V, x)
$$\begin{split} B(V,x): & \quad \text{if } V \text{ is an input vertex} \\ & \quad \text{return appropriate } x_i \\ & \quad \text{let } V_1, \, V_2 = \text{vertices with an edge to } V \end{split}$$

Theorem: uniform-NC¹ \subseteq L.

Proof: Let *L* be in **uniform-NC**¹.

We will construct a logspace algorithm A for L.

A(x):

let C = circuit for |x| length input. V = output vertex of Coutput B(V, x)

B(V, x): if V is an input vertex **return** appropriate x_i let V_1 , V_2 = vertices with an edge to V op = boolean operator of V

Theorem: uniform-NC¹ \subseteq L.

Proof: Let *L* be in **uniform-NC**¹.

We will construct a logspace algorithm A for L.

A(x):

let C = circuit for |x| length input. V = output vertex of Coutput B(V, x)

B(V, x): if V is an input vertex **return** appropriate x_i let V_1 , V_2 = vertices with an edge to V op = boolean operator of Vreturn $B(V_1, x)$ op $B(V_2, x)$

Theorem: uniform-NC¹ \subseteq L.

Proof: Let *L* be in **uniform-NC**¹.

We will construct a logspace algorithm A for L.

A(x):

let C = circuit for |x| length input. V = output vertex of Coutput B(V, x)

Space Complexity of *B*:

B(V, x): if V is an input vertex **return** appropriate x_i let V_1 , V_2 = vertices with an edge to V op = boolean operator of Vreturn $B(V_1, x)$ op $B(V_2, x)$

Theorem: uniform-NC¹ \subseteq L.

Proof: Let *L* be in **uniform-NC**¹.

We will construct a logspace algorithm A for L.

A(x):

let C = circuit for |x| length input. V = output vertex of Coutput B(V, x)

B(V, x): if V is an input vertex **return** appropriate x_i let V_1 , V_2 = vertices with an edge to V op = boolean operator of Vreturn $B(V_1, x)$ op $B(V_2, x)$

Space Complexity of B: Total $O(\log n)$ recursion levels and at every level it is storing

Theorem: uniform-NC¹ \subseteq L.

Proof: Let *L* be in **uniform-NC**¹.

We will construct a logspace algorithm A for L.

A(x):

let C = circuit for |x| length input. V = output vertex of C**output** B(V, x)

Space Complexity of *B*: Total *O*(log constant information.

B(V, x): **if** *V* is an input vertex **return** appropriate *x_i* **let** *V*₁, *V*₂ = vertices with an edge to *V op* = boolean operator of *V* **return** *B*(*V*₁, *x*) *op B*(*V*₂, *x*)

Space Complexity of *B***:** Total $O(\log n)$ recursion levels and at every level it is storing

Theorem: uniform-NC¹ \subseteq L.

Proof: Let *L* be in **uniform-NC**¹.

We will construct a logspace algorithm A for L.

A(x):

let C = circuit for |x| length input. V = output vertex of C**output** B(V, x)

Space Complexity of *B*: Total *O*(log constant information.

B(V, x): **if** *V* is an input vertex **return** appropriate *x_i* **let** *V*₁, *V*₂ = vertices with an edge to *V op* = boolean operator of *V* **return** *B*(*V*₁, *x*) *op B*(*V*₂, *x*)

Space Complexity of *B***:** Total $O(\log n)$ recursion levels and at every level it is storing

Theorem: NL \subseteq uniform-AC¹.

Theorem: NL \subseteq uniform-AC¹.

Proof:

Theorem: NL \subseteq uniform-AC¹.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Theorem: NL \subseteq uniform-AC¹.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Let A_{I} denote the $N \times N$ matrix, where N = # of configurations of M on an input x, s.t.

Theorem: NL \subseteq uniform-AC¹.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Let A_I denote the $N \times N$ matrix, where N = # of configurations of M on an input x, s.t. $A_{l}[i,j] = 1$ iff \exists a path of length at most 2^{l} from *i* to *j* in $G_{M,x}$.

Theorem: NL \subseteq uniform-AC¹.

- **Proof:** Let L be in NL and M be a logspace NTM that decides it.

How can we compute A_{l+1} from A_l ?

Let A_I denote the $N \times N$ matrix, where N = # of configurations of M on an input x, s.t. $A_{l}[i,j] = 1$ iff \exists a path of length at most 2^{l} from *i* to *j* in $G_{M,x}$.

- **Theorem:** NL \subseteq uniform-AC¹.
- **Proof:** Let L be in NL and M be a logspace NTM that decides it.

 - How can we compute A_{l+1} from A_l ? $A_{l+1}[i,j] =$

Let A_I denote the $N \times N$ matrix, where N = # of configurations of M on an input x, s.t. $A_{l}[i,j] = 1$ iff \exists a path of length at most 2^{l} from *i* to *j* in $G_{M,x}$.

- **Theorem:** NL \subseteq uniform-AC¹.
- **Proof:** Let L be in NL and M be a logspace NTM that decides it.

 - How can we compute A_{l+1} from A_l ? $A_{l+1}[i,j] = \bigvee_{1 \le k \le N} (A_{l}[i,k] \land A_{l}[k,j])$

Let A_1 denote the $N \times N$ matrix, where N = # of configurations of M on an input x, s.t. $A_{l}[i,j] = 1$ iff \exists a path of length at most 2^{l} from *i* to *j* in $G_{M,x}$.

Theorem: NL \subseteq uniform-AC¹.

Proof: Let L be in NL and M be a logspace NTM that decides it.

Let A_1 denote the $N \times N$ matrix, where N = # of configurations of M on an input x, s.t. $A_{l}[i,j] = 1$ iff \exists a path of length at most 2^{l} from *i* to *j* in $G_{M,x}$.

How can we compute A_{l+1} from A_l ? $A_{l+1}[i,j] = \bigvee_{1 \le k \le N} (A_{l}[i,k] \land A_{l}[k,j])$

Building the circuit for L:

- **Theorem:** NL \subseteq uniform-AC¹.
- **Proof:** Let L be in NL and M be a logspace NTM that decides it.

 - How can we compute A_{l+1} from A_l ? $A_{l+1}[i,j] = \bigvee_{1 \le k \le N} (A_{l}[i,k] \land A_{l}[k,j])$

Building the circuit for L:

• Have one layer for every $l \in [0, \log N]$.

Let A_1 denote the $N \times N$ matrix, where N = # of configurations of M on an input x, s.t. $A_{l}[i, j] = 1$ iff \exists a path of length at most 2^{l} from *i* to *j* in $G_{M,x}$.

- **Theorem:** NL \subseteq uniform-AC¹.
- **Proof:** Let L be in NL and M be a logspace NTM that decides it.

 - How can we compute A_{l+1} from A_l ? $A_{l+1}[i,j] = \bigvee_{1 < k < N} (A_{l}[i,k] \land A_{l}[k,j])$

Building the circuit for *L*:

- Have one layer for every $l \in [0, \log N]$.
- In the *l*th layer, keep one vertex for every (i, j)th entry of A_l .

Let A_1 denote the $N \times N$ matrix, where N = # of configurations of M on an input x, s.t. $A_{l}[i,j] = 1$ iff \exists a path of length at most 2^{l} from *i* to *j* in $G_{M,x}$.

- **Theorem:** NL \subseteq uniform-AC¹.
- **Proof:** Let L be in NL and M be a logspace NTM that decides it.

Let A_1 denote the $N \times N$ matrix, where N = # of configurations of M on an input x, s.t. $A_{l}[i,j] = 1$ iff \exists a path of length at most 2^{l} from *i* to *j* in $G_{M,x}$.

How can we compute A_{l+1} from A_l ? $A_{l+1}[i,j] = \bigvee_{1 < k < N} (A_{l}[i,k] \land A_{l}[k,j])$

Building the circuit for *L*:

- Have one layer for every $l \in [0, \log N]$.
- In the *l*th layer, keep one vertex for every (i, j)th entry of A_i .
- Arrange wires/edges from *l*th layer to (l + 1)th layer according to this formula.

- **Theorem:** NL \subseteq uniform-AC¹.
- **Proof:** Let L be in NL and M be a logspace NTM that decides it.

Let A_1 denote the $N \times N$ matrix, where N = # of configurations of M on an input x, s.t. $A_{l}[i,j] = 1$ iff \exists a path of length at most 2^{l} from *i* to *j* in $G_{M,x}$.

How can we compute A_{l+1} from A_l ? $A_{l+1}[i,j] = \bigvee_{1 \le k \le N} (A_{l}[i,k] \land A_{l}[k,j])$

Building the circuit for *L*:

- Have one layer for every $l \in [0, \log N]$.
- In the *l*th layer, keep one vertex for every (i, j)th entry of A_l .

• Arrange wires/edges from lth layer to (l + 1)th layer according to this formula.

- **Theorem:** NL \subseteq uniform-AC¹.
- **Proof:** Let L be in NL and M be a logspace NTM that decides it.

Let A_1 denote the $N \times N$ matrix, where N = # of configurations of M on an input x, s.t. $A_{l}[i,j] = 1$ iff \exists a path of length at most 2^{l} from *i* to *j* in $G_{M,x}$.

How can we compute A_{l+1} from A_l ? $A_{l+1}[i,j] = \bigvee_{1 < k < N} (A_{l}[i,k] \land A_{l}[k,j])$

Building the circuit for *L*:

- Have one layer for every $l \in [0, \log N]$.
- In the *l*th layer, keep one vertex for every (i, j)th entry of A_l .
- Arrange wires/edges from *l*th layer to (l + 1)th layer according to this formula.

- **Theorem:** NL \subseteq uniform-AC¹.
- **Proof:** Let L be in NL and M be a logspace NTM that decides it.

Let A_1 denote the $N \times N$ matrix, where N = # of configurations of M on an input x, s.t. $A_{l}[i,j] = 1$ iff \exists a path of length at most 2^{l} from *i* to *j* in $G_{M,x}$.

How can we compute A_{l+1} from A_l ? $A_{l+1}[i,j] = \bigvee_{1 < k < N} (A_{l}[i,k] \land A_{l}[k,j])$

Building the circuit for *L*:

- Have one layer for every $l \in [0, \log N]$.
- In the *l*th layer, keep one vertex for every (i, j)th entry of A_l .

• Keep the (start config, acc. config.) vertex in the last layer as output vertex.

- **Theorem:** NL \subseteq uniform-AC¹.
- **Proof:** Let L be in NL and M be a logspace NTM that decides it.

Let A_1 denote the $N \times N$ matrix, where N = # of configurations of M on an input x, s.t. $A_{l}[i,j] = 1$ iff \exists a path of length at most 2^{l} from *i* to *j* in $G_{M,x}$.

How can we compute A_{l+1} from A_l ? $A_{l+1}[i,j] = \bigvee_{1 < k < N} (A_{l}[i,k] \land A_{l}[k,j])$

Building the circuit for *L*:

- Have one layer for every $l \in [0, \log N]$.
- In the *l*th layer, keep one vertex for every (i, j)th entry of A_l .

• Keep the (start config, acc. config.) vertex in the last layer as output vertex.